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Introduction

• Wide dissemination of data facilitates advances in science and
public policy, enables students to develop skills at data analysis,
and helps ordinary citizens learn about their communities

• Often, however, agencies cannot release data as collected,
because doing so could reveal data subjects’ identities or values of
sensitive attributes

• Failure to protect confidentiality can have serious consequences for
agencies, since they may be violating laws or institutional rules
enacted to protect confidentiality
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Introduction

• At first glance, sharing safe data with others seems a
straightforward task: simply strip unique identifiers like names, tax
identification numbers, and exact addresses before releasing data

• However, these actions alone may not suffice when
quasi-identifiers, such as demographic variables,
employment/education histories, or establishment sizes, remain on
the file
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Common strategies for data anonymization Original data

Original Data

1712 57 UCLA LAW REVIEW 1701 (2010) 

 
 

privately to a third party, or internally within her own organization—and 
then she forgets, meaning she makes no attempt to track what happens to 
the records after release.  Rather than blithely put her data subjects at risk, before 
she releases, she modifies some of the information. 

I focus on release-and-forget anonymization for two reasons.  First, these 
techniques are widespread.46  Because they promise privacy while allowing 
the broad dissemination of data, they give data administrators everything they 
want without any compromises, and data administrators have embraced them.47  
Second, these techniques are often flawed.  Many of the recent advances in the 
science of reidentification target release-and-forget anonymization in particular.48 

Consider some common release-and-forget techniques.49  First, we need 
a sample database to anonymize, a simplified and hypothetical model of a 
hospital’s database for tracking visits and complaints:50 

TABLE 1: Original (Nonanonymized) Data 

Name Race Birth Date Sex ZIP 
Code Complaint 

Sean Black 9/20/1965 Male 02141 Short of breath 
Daniel Black 2/14/1965 Male 02141 Chest pain 
Kate Black 10/23/1965 Female 02138 Painful eye 

Marion Black 8/24/1965 Female 02138 Wheezing 
Helen Black 11/7/1964 Female 02138 Aching joints 
Reese Black 12/1/1964 Female 02138 Chest pain 
Forest White 10/23/1964 Male 02138 Short of breath 
Hilary White 3/15/1965 Female 02139 Hypertension 
Philip White 8/13/1964 Male 02139 Aching joints 
Jamie White 5/5/1964 Male 02139 Fever 
Sean White 2/13/1967 Male 02138 Vomiting 

Adrien White 3/21/1967 Male 02138 Back pain 
 

                                                                                                                            
 46. See Laks V.S. Lakshmanan & Raymond T. Ng, On Disclosure Risk Analysis of Anonymized 
Itemsets in the Presence of Prior Knowledge, 2 ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM 
DATA 13, 13:2 (2008) (“Among the well-known transformation techniques, anonymization is arguably 
the most common.”). 
 47. Id. (“Compared with other transformation techniques, anonymization is simple to carry out, 
as mapping objects back and forth is easy.”). 
 48. See Justin Brickell & Vitaly Shmatikov, The Cost of Privacy: Destruction of Data-Mining 
Utility in Anonymized Data Publishing, in 2008 KNOWLEDGE DISCOVERY & DATA MINING CONF. 70, 70. 
 49. The following discussion is only a survey; it will make an expert of no one. 
 50. All of the hypothetical data in this table aside from the “Name” column comes from a paper 
by Latanya Sweeney.  Sweeney, supra note 8, at 567 fig.4.  Where the first names come from is left as 
an exercise for the reader. 
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Common strategies for data anonymization Suppression

Suppressed Data

1714 57 UCLA LAW REVIEW 1701 (2010) 

 
 

TABLE 2: Suppressing Four Identifier Fields 

Race Complaint 
Black Short of breath 
Black Chest pain 
Black Painful eye 
Black Wheezing 
Black Aching joints 
Black Chest pain 
White Short of breath 
White Hypertension 
White Aching joints 
White Fever 
White Vomiting 
White Back pain 

 
Here we first encounter a fundamental tension.  On the one hand, with 

this version of the data, we should worry little about privacy; even if one knows 
Forest’s birth date, sex, ZIP code, and race, one still cannot learn Forest’s com-
plaint.  On the other hand, aggressive suppression has rendered this data almost 
useless for research.57  Although a researcher can use the remaining data to 
track the incidence of diseases by race, because age, sex, and residence have 
been removed, the researcher will not be able to draw many other interesting 
and useful conclusions. 

Generalization: To better strike the balance between utility and privacy, 
the anonymizer might generalize rather than suppress identifiers.58  This means 
she will alter rather than delete identifier values to increase privacy while 
preserving utility.  For example, the anonymizer may choose to suppress the 
name field, generalize the birth date to only the year of birth, and generalize ZIP 
codes by retaining only the first three digits.59  The resulting data would look 
like this: 

                                                                                                                            
 57. See infra Part III.B.1 (discussing the relationship between utility and privacy). 
 58. Sweeney, supra note 8, at 3. 
 59. Under the HIPAA Privacy Rule, these three changes would qualify the resulting table as 
deidentified health information.  See U.S. Health & Human Services, Standards for Privacy of 
Individually Identifiable Health Information, 45 C.F.R. §§ 160, 164 (2009).  For more on HIPAA and the 
Privacy Rule, see infra Part II.A.3.a. 
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Common strategies for data anonymization Generalization

Generalized Data

Broken Promises of Privacy 1715 

 
 

TABLE 3: Generalized 

Race Birth 
Year Sex ZIP 

Code* Complaint 

Black 1965 Male 021* Short of breath 
Black 1965 Male 021* Chest pain 
Black 1965 Female 021* Painful eye 
Black 1965 Female 021* Wheezing 
Black 1964 Female 021* Aching joints 
Black 1964 Female 021* Chest pain 
White 1964 Male 021* Short of breath 
White 1965 Female 021* Hypertension 
White 1964 Male 021* Aching joints 
White 1964 Male 021* Fever 
White 1967 Male 021* Vomiting 
White 1967 Male 021* Back pain 

 
Now, even someone who knows Forest’s birth date, ZIP code, sex, and 

race will have trouble plucking out Forest’s specific complaint.  The records 
in this generalized data (Table 3) are more difficult to reidentify than they 
were in the original data (Table 1), but researchers will find this data much 
more useful than the suppressed data (Table 2). 

Aggregation: Finally, to better understand what qualifies as release-and-
forget anonymization, consider a commonly used technique that does not 
obey release-and-forget.  Quite often, an analyst needs only summary statistics, 
not raw data.  For decades, statisticians have investigated how to release aggre-
gate statistics while protecting data subjects from reidentification.60  Thus, if 
researchers only need to know how many men complained of shortness of 
breath, data administrators could release this: 

TABLE 4: Aggregate Statistic 

Men Short of Breath 2 

                                                                                                                            
 60. E.g., Nabil R. Adam & John C. Wortmann, Security-Control Methods for Statistical Databases: 
A Comparative Study, 21 ACM COMPUTING SURVEYS 515 (1989); Tore Dalenius, Towards a 
Methodology for Statistical Disclosure Control, 15 STATISTISK TIDSKRIFT 429 (1977) (Swed.); I.P. Fellegi, 
On the Question of Statistical Confidentiality, 67 J. AM. STAT. ASS’N 7 (1972). 
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Some real examples of the anonymization failure The MGIC Data

• The Massachusetts Group Insurance Commission (MGIC) had a
bright idea back in the mid-1990s

• It decided to release “anonymized” data on state employees that
showed every single hospital visit

• The goal was to help researchers, and the state spent time
removing all obvious identifiers such as name, address, and Social
Security number (SSN)

• But a graduate student in data science (Latanya Sweeney) saw a
chance to make a point about the limits of anonymization
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Some real examples of the anonymization failure The MGIC Data

• At the time MGIC released the data, William Weld, then Governor of
Massachusetts, assured the public that MGIC had protected patient
privacy by deleting identifiers

• In response, Latanya Sweeney started hunting for the Governor’s
hospital records in the MGIC data

• She knew that Governor Weld resided in Cambridge,
Massachusetts, a city of 54,000 residents and seven ZIP codes

• For twenty dollars, she purchased the complete voter rolls from the
city of Cambridge, a database containing, among other things, the
name, address, ZIP code, birth date, and sex of every voter
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Some real examples of the anonymization failure The MGIC Data

• By combining this data with the MGIC records, Sweeney found
Governor Weld with ease

• Only six people in Cambridge shared his birth date, only three of
them men, and of them, only he lived in his ZIP code

• In a theatrical flourish, Sweeney sent the Governor’s health records
(which included diagnoses and prescriptions) to his office

• In 2000, Sweeney showed that 87 percent of all Americans could
be uniquely identified using only three bits of information: ZIP code,
birthdate, and sex
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Some real examples of the anonymization failure The MGIC Data

• Sweeney also showed that 57 percent of American citizens are
uniquely identified by their city, birth date, sex

• Finally, she showed that 18 percent of American citizens are
uniquely identified by their county, birth date, sex
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Some real examples of the anonymization failure U.S. Office of Personnel Management

https://www.fedscope.opm.gov/, Diversity, 2018

Aggregated data: To protect the information (for example the race) they
put an NA in the cells where there are less than 4 data points
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Some real examples of the anonymization failure U.S. Office of Personnel Management

Agency: IN06-INDIAN AFFAIRS
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Some real examples of the anonymization failure U.S. Office of Personnel Management

The first row is Alabama and all the cells are NA (in other words, there
are less than 4 employees working for that agency in Alabama)
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Some real examples of the anonymization failure U.S. Office of Personnel Management

• From the row of Alaska, it is clear that 80 are American Indian, 6
have More than one race, and that there are 90 employees working
for that agency, that is, there are 4 employees that you do not know
whether to locate them in Asian, Black, Hawaiian, or Latino

• What is silly here, is that for example if you look at Michigan you will
see that everyone has the same race (American Indian)

• The same happens for North Carolina and Mississippi
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A toy example for understanding the failure R code and data

• The example assume that a certain dataset is confidential and we
want to protect privacy of the individuals

• Let’s assume that the ID completely identifies individuals and that
we want to protect the privacy of their salaries (income)

• Let’s play with R now
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Some problems with anonymized data Group level data – Individual vs aggregate correlations

• An ecological fallacy (or ecological inference fallacy) is a fallacy in
the interpretation of statistical data where inferences about the
nature of individuals are deduced from inference for the group to
which those individuals belong

• Relationships that apply to a group level do not necessarily apply to
an individual level
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Some problems with anonymized data Group level data – Individual vs aggregate correlations

• Example of incidence of motor vehicle accident

• Population A: Average income of 50K and incidence of 57%

• Population B: Average income of 30K and incidence of 43%

• Population C: Average income of 20K and incidence of 29%
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Some problems with anonymized data Group level data – Individual vs aggregate correlations
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Some problems with anonymized data Group level data – Individual vs aggregate correlations

• The formal problem is that

Cov

(
N∑
i=1

Yi,

N∑
i=1

Xi

)
=

N∑
i=1

Cov(Yi, Xi) +

N∑
i=1

∑
l 6=i

Cov(Xi, Yl)
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Some problems with anonymized data Group level data – Individual vs aggregate correlations

• William S. Robinson (1950) computed the correlation between the
illiteracy rate and the proportion of the population born outside the
US

• He found a correlation of −0.53; in other words, the greater the
proportion of immigrants in a state, the lower its average illiteracy

• However, when individuals are considered, the correlation was
+0.12 (immigrants were on average more illiterate than native
citizens)

• Robinson showed that the negative correlation at the level of state
populations was because immigrants tended to settle in states
where the native population was more literate
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Some problems with anonymized data Group level data – Simpson’s paradox

• Suppose that you need to chose between two hospitals for an
elderly relative’s surgery

• Out of each hospital’s last 1000 patients, 900 survived in hospital A
but only 800 survived in hospital B

• It looks like hospital A is the better choice

• However, if we divide each hospital’s last 1000 patients into those
who arrive in good health and those who arrived in bad health, the
picture starts to look very different
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Some problems with anonymized data Group level data – Simpson’s paradox

• Hospital A has only 100 patients who arrived in poor health, of
which 30 survived

• Hospital B has 400 patients who arrived in poor health, of which
210 survived

• So hospital B is the better choice for patients who arrived in poor
health with a survival rate of 52.5%
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Some problems with anonymized data Group level data – Simpson’s paradox

• Formally, what we see is that for every value of z,

E(Y | Z = z,X = 1) > E(Y | Z = z,X = 0),

while
E(Y | X = 1) < E(Y | X = 0)

Alejandro Jara (midas.mat.uc.cl ) BNP and Data Privacy 25/61 September 26th, 2018 25 / 61



Some problems with anonymized data Group level data – Simpson’s paradox

• What if your relative arrive in good health to the hospital?

• Hospital B is still the better choice with a survival rate of 98.3%
(590/600)

• For hospital A the survival rate in this case is 96.7% (870/900)
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Some problems with anonymized data Data transformation

• Let Z = (Z1, Z2, Z3)
T ∼ N3 (µ,Σ), where

µ = (0, 0, 0)T ,

and

Σ =

 1.00 0.64 0.80
0.64 1.00 0.80
0.80 0.80 1.00



• It is clear that Z1⊥⊥Z2 | Z3, because

Σ−1 =

 1.00 0.00 0.62
0.00 1.00 0.62
0.62 0.62 1.00
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Some problems with anonymized data Data transformation

• Suppose that to anonymise the data we instead report

Yi =

{
1 if Vi ≥ 0,
0 if Vi < 0.

• Then,
Pr(Y1 = 1, Y2 = 1 | Y3 = 1) = 0.6557,

while

Pr(Y1 = 1 | Y3 = 1) = Pr(Y2 = 1 | Y3 = 1) = 0.7952,

and
Pr(Y1 = 1 | Y3 = 1)× Pr(Y2 = 1 | Y3 = 1) = 0.6323.
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Other strategies for data anonymization Adding random noise

• Adding some randomly selected amount to the observed values, for
example a random draw from a normal distribution with mean equal
to zero

• This can reduce the possibilities of accurate matching on the
perturbed data and distort the values of sensitive variables

• The degree of confidentiality protection depends on the nature of
the noise distribution; for example, using a large variance provides
greater protection

• However, adding noise with large variance introduces measurement
error that stretches marginal distributions and attenuates regression
coefficients
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Other strategies for data anonymization Synthetic data

• The basic idea of synthetic data is to replace original data values at
high risk of disclosure with values simulated from probability
distributions

• These distributions are specified to reproduce as many of the
relationships in the original data as possible

• Synthetic data approaches come in two flavors: partial and full
synthesis
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Other strategies for data anonymization Synthetic data

• Partially synthetic data comprise the units originally surveyed with
some subset of collected values replaced with simulated values

• For example, the agency might simulate sensitive or identifying
variables for units in the sample with rare combinations of
demographic characteristics; or, the agency might replace all data
for selected sensitive variables

• Fully synthetic data comprise an entirely simulated data set; the
originally sampled units are not on the file

• In both types, the agency generates and releases multiple versions
of the data (as in multiple imputation for missing data)
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Other strategies for data anonymization Synthetic data

• Synthetic data can provide valid inferences for analyses that are in
accord with the synthesis models

• But they may not give good results for other analyses

• This is where Bayesian nonparametric models can play a big role
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Bayesian nonparametrics Why nonparametrics?

• Data sometimes is super weird:

• Internet transaction data distributions have a big spike at zero and
spikes at other discrete values (e.g., 1 or $99)

• Big tails that matter (e.g., $12 mil/month eBay user spend)

• The potential feature space is unmanageably large

• We cannot write down simple models to explain the data
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Bayesian nonparametrics Classical statistical models

• Data are envisioned as realizations of random objects Y 1, . . . ,Y n

• The assumption is that Y = (Y 1, . . . ,Y n) is drawn from a
probability distribution G

• Statistical models arise when G, or equivalent the density g, is
known to be a member from a family

M = {(Y,B, Gθ) : θ ∈ Θ},

labeled by a set of parameters θ from an index set Θ
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Bayesian nonparametrics Classical statistical models

• Models that are described through a vector of a finite number of,
typically, real values are referred to as finite-dimensional parametric
models

• Finite-dimensional parametric models can be described by the
family

M = {(Yn,B, Gθ) : θ ∈ Θ ⊆ Rp},

where the dimension p > 0 is a finite integer
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Bayesian nonparametrics Classical statistical models

• Advantages:

• Convenience: parametric models are generally easier to work with

• Efficiency: If a parametric model is correct, then parametric methods
are more efficient than nonparametric methods (However, the loss in
efficiency is often small)

• Interpretation: Sometimes parametric models are easier to interpret

• Disadvantages:

• Sometimes it is hard to find a suitable parametric model

• High risk of misspecification: assuming a wrong model
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Bayesian nonparametrics Classical statistical models

• Models that are described through infinite-dimensional parameters
are referred to as nonparametric models

• Example (density estimation):

Y1, . . . , Yn | G
i.i.d.∼ G,

where G is a probability distribution defined on R

• In this case,
θ = G,

Θ ≡ P(R) = {F : F is a probability distribution defined on R}
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Bayesian nonparametrics Bayesian statistical models

• A Bayesian model is a unique probability measure on the product
space “parameters × observations.”

• The sampling distribution gθ(y) is treated as a conditional
distribution g (y | θ).

• The parameter vector θ ∈ Θ is treated as random with distribution
π (θ) that is called the prior.
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Bayesian nonparametrics Bayesian statistical models

• Suppose that Y | θ ∼ Binomial(n, θ)

• Suppose that θ | α, β ∼ Beta(α, β)

• Then,

• λn,Π(y, θ) =
(n
y)

B(α,β)θ
α+y−1(1− θ)n−y+β−1, θ ∈ [0, 1], y = 0, 1, 2, . . . , n

• m(y) =
(n
y)B(y+α,n−y+β)

B(α,β) , y = 0, 1, 2, . . . , n

• p(θ | y) = 1
B(y+α,n−x+β)θ

α+y−1(1− θ)n−y+β−1, θ ∈ [0, 1]

• m(y0 | y) =
(n
y)B(y+y0+α,2n−y−y0+β)

B(y+α,n−y+β) , y0 = 0, 1, 2, . . . , n
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Bayesian nonparametrics Bayesian statistical models

• Bayesian inference is based on the posterior distribution, which
represents the updated knowledge about θ

322 ASPECTS OF ORAL HEALTH RESEARCH

PREVALENCE
0.0 0.2 0.4 0.6 0.8 1.0

PRIOR DISTRIBUTION

95%

Figure 18.1 Prevalence of caries experience: Prior distribution on prevalence, the
95 % prior boundaries are indicated by vertical lines.

PREVALENCE
0.0 0.2 0.4 0.6 0.8 1.0

PRIOR DISTRIBUTION
LIKELIHOOD

POSTERIOR DISTRIBUTION

Figure 18.2 Prevalence of caries experience: Prior- and posterior distribution
together with binomial likelihood on prevalence.

distribution p(π |y) is shown for our example together with the prior distribution
and expresses what values of π are plausible in the light of the study and the prior
information. The most plausible posterior value, the posterior mode, is the value
of π that maximizes p(π |y) and is here equal to 0.57. Further, the a posteriori
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Bayesian nonparametrics Bayesian statistical models

• The interpretation of the inferences is not based on frequentist
concepts

324 ASPECTS OF ORAL HEALTH RESEARCH
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Figure 18.3 Prevalence of caries experience: Posterior obtained from combining a
non-informative prior with the likelihood obtained from a survey in which five out
of 30 children had caries experience. The overlaying histogram is obtained from
1000 sampled values from the posterior.

measures can be used to characterize the posterior, but a common choice is the
posterior mean except when the posterior is skewed in which case the posterior
median is preferred (as in our example). It is important to stress that the choice of
the posterior point estimator is formally based on decision-theoretic arguments. The
aforementioned summary measures only characterize the location of the posterior,
but we also need to characterize the spread in p(π |y). This is given by the posterior
standard deviation σ̄ derived from the posterior variance in a similar way as the
posterior mean. For our example, σ̄ is 0.068. The Bayesian equivalent of the
classical (95 %) confidence interval is called the (95 %) credible interval (CI). A
95 % CI is the interval [a, b] satisfying

P (a < π < b | y) = 0.95.

The above property does not uniquely define the credible interval, though. A pop-
ular version is the equal-tail 95 % CI. In this case a and b are chosen such that
P (π < a|y) = 0.025 and P (b < π |y) = 0.025. This yields for our example (cal-
culated using standard software) a 95 % equal-tail CI of [0.075, 0.34], displayed
in Figure 18.3. The interpretation of this interval is that ‘we are uncertain about
the true value of π but with 95 % (posterior) certainty we believe that the preva-
lence lies between 0.075 and 0.34’. Isn’t this the way that we usually interpret our
classical 95 % confidence interval?
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Bayesian nonparametrics Bayesian statistical models

Theorem
(de Finetti, 1935) The sequence of random objects (Y 1,Y 2, . . .) is
exchangeable if and only if there is a unique probability measure Π such
that for all n the joint probability distribution of Y 1, . . . ,Y n has a mixture
model representation

g(Y 1, . . . ,Y n) =

∫ n∏
i=1

gθ(Y i)dΠ(θ),

for some random variable θ
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Bayesian nonparametrics The Dirichlet process

Theorem (Sethuraman, 1994)
Let V1, V2, . . .

i.i.d.∼ Beta(1, α) and X1, X2, . . .
i.i.d.∼ G0. Then

G(·) =

∞∑
i=1

WiδXi(·),

where, W1 = V1 and, for i = 2, . . ., Wi = Vi
∏i−1

j=1(1− Vj), is a Dirichlet
process with parameters (α,G0).
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Bayesian nonparametrics The Dirichlet process
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Bayesian nonparametrics The Dirichlet process

• Consider the following Polya urn model:

Y1 | G0 ∼ G0,

and, for i = 2, 3, . . .,

Yi | Y1 . . . , Yi−1, α,G0 ∼ Gn ≡
1

α+ i− 1

i−1∑
j=1

δYj +
α

α+ i− 1
G0,

where δy is the Dirac measure on (S,F) giving mass one to the
point y
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Bayesian nonparametrics The Dirichlet process

Theorem (Blackwell and MacQueen, 1973)
Let Y1 ∼ G0 and for i = 2, 3, . . ., Yi | Y1 . . . , Yi−1, α,G0 ∼ Gn as defined
before. Then

• Gn converges almost surely to a random discrete distribution G, as
n→∞

• G is a Dirichlet process (DP) with parameters (α,G0)

• The sequence Y1, . . . , Yn is a sample from G

Alejandro Jara (midas.mat.uc.cl ) BNP and Data Privacy 46/61 September 26th, 2018 46 / 61



Application The SIMCE data

• The SIMCE project in Chile has developed mandatory tests to
assess regularly the educational progress in three levels: 4th and
8th grades in primary school, and 2th grade in secondary school

• We will focus on data from the Math test, applied in 2006 to the
second grade in secondary school (16 years old)

• The test consists of 45 multiple choice items with 4 alternatives,
including a variety of questions ranging from problem formulation,
functions,simple algebra, geometry and probability

Alejandro Jara (midas.mat.uc.cl ) BNP and Data Privacy 47/61 September 26th, 2018 47 / 61



Application The SIMCE data

• The SIMCE project in Chile has developed mandatory tests to
assess regularly the educational progress in three levels: 4th and
8th grades in primary school, and 2th grade in secondary school

• We will focus on data from the Math test, applied in 2006 to the
second grade in secondary school (16 years old)

• The test consists of 45 multiple choice items with 4 alternatives,
including a variety of questions ranging from problem formulation,
functions,simple algebra, geometry and probability

Alejandro Jara (midas.mat.uc.cl ) BNP and Data Privacy 47/61 September 26th, 2018 47 / 61



Application The SIMCE data

• The SIMCE project in Chile has developed mandatory tests to
assess regularly the educational progress in three levels: 4th and
8th grades in primary school, and 2th grade in secondary school

• We will focus on data from the Math test, applied in 2006 to the
second grade in secondary school (16 years old)

• The test consists of 45 multiple choice items with 4 alternatives,
including a variety of questions ranging from problem formulation,
functions,simple algebra, geometry and probability

Alejandro Jara (midas.mat.uc.cl ) BNP and Data Privacy 47/61 September 26th, 2018 47 / 61



Application The SIMCE data

●
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• Models implying exchangeability of the response patterns are not
suitable.
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Application The Rasch model

• Assume that for each of m subjects the responses to n items
{Yij , i = 1, . . . ,m, j = 1, . . . , n} are recorded.

• Let Y i = (Yi1, ..., Yin)′ be the response pattern for subject i, where
Yij ∈ {0, 1}.
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Application The Rasch model

In the Rasch model, the sampling model is given by

Yij | λij
ind∼ Bernoulli (λij)

λij =
exp{bi − βj}

1 + exp{bi − βj}
,

where bi represents the ability of subject i and βj represent the difficulty
of the item j
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Application The Rasch model

• The ability parameters are considered as random effects whereas
the difficulty parameters are interpreted as “fixed" effects

• The classical specification of the model is completed by choosing a
probability model for the abilities

• The typical assumption is given by,

b1, . . . , bm | G
iid∼ G,

where G is a probability distribution on R

Alejandro Jara (midas.mat.uc.cl ) BNP and Data Privacy 51/61 September 26th, 2018 51 / 61



Application The Rasch model

• The ability parameters are considered as random effects whereas
the difficulty parameters are interpreted as “fixed" effects

• The classical specification of the model is completed by choosing a
probability model for the abilities

• The typical assumption is given by,

b1, . . . , bm | G
iid∼ G,

where G is a probability distribution on R

Alejandro Jara (midas.mat.uc.cl ) BNP and Data Privacy 51/61 September 26th, 2018 51 / 61



Application The Rasch model

• The ability parameters are considered as random effects whereas
the difficulty parameters are interpreted as “fixed" effects

• The classical specification of the model is completed by choosing a
probability model for the abilities

• The typical assumption is given by,

b1, . . . , bm | G
iid∼ G,

where G is a probability distribution on R

Alejandro Jara (midas.mat.uc.cl ) BNP and Data Privacy 51/61 September 26th, 2018 51 / 61



Application The Rasch model

• We consider a dependent DP (DDP) mixture model for the
distribution of the abilities bi’s,

gzi(· | σ2, Gzi) =

∫
1

σ
φ

(
· − θ
σ

)
Gzi (dθ) ,

where {Gz : z ∈ Z} ∼ DDP

Alejandro Jara (midas.mat.uc.cl ) BNP and Data Privacy 52/61 September 26th, 2018 52 / 61



Application The results

• We consider the type of school and the gender as covariates.

• The type of school is a factor considering the levels:

• Financed by the state and administered by county governments
(Public Type 1).

• Financed by the state and administered by county corporations
(Public Type 2).

• Financed by the state and administered by the private sector (Private
Type 1).

• Fee-paying schools that operate solely on payments from parents
and administered by the private sector (Private Type 2).
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Application The results

The Results - Public I
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Application The results

The Results - Public II
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Application The results

The Results - Private I
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Application The results

The Results - Private II
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Final comments

• Data can be either useful or perfectly anonymous but never both

• One cannot eliminate the risk of disclosure, simply reduce it, unless
one restricts access to the data

• Thus techniques for disclosure limitation are inherently statistical in
nature and must be evaluated using statistical tools for assessing
the risk of harm to respondents
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Final comments

Thanks
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